Real-Time Obstacle Avoidance and Motion Coordination in a Multi-Robot Workcell
نویسندگان
چکیده
To exploit the potential benefit of multi-robot workcells, powerful motion planning and motion execution paradigms are necessary. The novel framework of elastic strips allows real-time obstacle avoidance and implicit motion coordination for multiple robots in a shared workspace. I t augments motion plans with a reactive component allowing the avoidance of unpredictably moving obstacles. The obstacle avoidance behavior is task-dependent so that task behavior is not suspended to avoid obstacles. The motion coordination behavior of robots can also be specified in a task-dependent manner. Motion coordination can be achieved by regarding other robots as obstacles or b y real-time modification of the trajectory’s time parameterization. Multi-robot workcells can be programmed b y planning the trajectories of all robots independently. Obstacle avoidance and motion coordination fo r the resulting trajectories are performed using elastic strips. The framework; has been applied to the simulation of a multi-robot workcell.
منابع مشابه
Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملMulti-Robot Path Planning by Predicting Structure in a Dynamic Environment
Path planning for multiple mobile robots is complicated by the presence of a dynamic environment, in which obstacles and other robots are moving. Centralized approaches are too computationally intensive for real-time response. Decoupled approaches which perform individual preplanning, conflict resolution, and reactive obstacle avoidance for each robot, can be globally inefficient. We propose a ...
متن کاملDynamic obstacle avoidance in multi-robot motion planning using prediction principle in real environment
This paper provides a new approach to the multi-robot path planning problem predicting the position of a dynamic obstacle which undergoes linear motion in the given workspace changing its direction at regular intervals of time. The prediction is done in order to avoid collision of the robots with the dynamic obstacle. First the work is done in simulation environment then the entire work has bee...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کامل